Sign up for our newsletter and get the latest big data news and analysis.

Ranked: 16 R packages for Machine Learning

At The Data Incubator we pride ourselves on having the latest data science curriculum. Much of our curriculum is based on feedback from corporate  and government partners about the technologies they are looking to learn. However, we wanted to develop a more data-driven approach to what we should be teaching in our data science corporate […]

How Google Is Changing the Landscape of Digital Marketing with Deep & Machine Learning

In this contributed, Amir Noghani, SEO specialist and the general manager at Green Web Marketing, takes a look at Google’s RankBrain, its machine learning, artificial intelligence system, and how it is forcing curators of website content to do what they should have been doing all along, creating quality content for their websites.

Cloudera to Accelerate Data Science and Machine Learning for the Enterprise with New Data Science Workbench

Cloudera, the provider of a leading platform for machine learning and advanced analytics built on the latest open source technologies, today unveiled Cloudera Data Science Workbench, a new self-service tool for data science on Cloudera Enterprise which is currently in beta.

Are AI/Machine Learning/Deep Learning in Your Company’s Future?

The insideBIGDATA Guide to Deep Learning & Artificial Intelligence is a useful new resource directed toward enterprise thought leaders who wish to gain strategic insights into this exciting area of technology. This is the fourth in a series of articles providing content extracted from the guide. The topic for this segment is the results of the recent “insideHPC insideBIGDATA AI/Deep Learning Survey 2016” underwritten by NVIDIA.

Interview: Paulo Sampaio, Data Scientist at EDITED

I recently caught up with Paulo Sampaio, Data Scientist at EDITED, to talk about applying machine learning, neural networks, natural language processing, and big data analytics to the retail industry. Paulo and his team are applying neural networks, machine learning and other models to analyze over 520 million products in real-time across 42 countries to make gradual distinctions in clothing styles, sizes and categories.

Machine Learning: Why it Matters?

In this contributed article, Smita Adhikary, Managing Consultant at Big Data Analytics Hires, provides a whirlwind overview of machine learning technology and why it’s important to increasing the value of enterprise data assets.

IBM Brings Machine Learning to the Private Cloud

IBM announced IBM Machine Learning, the first cognitive platform for continuously creating, training and deploying a high volume of analytic models in the private cloud at the source of vast corporate data stores. Even using the most advanced techniques, data scientists – in shortest supply among today’s IT skills* – might spend days or weeks […]

Dr. Eng Lim Goh on New Trends in Big Data and Deep Learning for Artificial Intelligence

In this video from SC16, Dr. Eng Lim Goh from HPE/SGI discusses new trends in HPC Energy Efficiency and Deep Learning for Artificial Intelligence. “Recently acquired by Hewlett Packard Enterprise, SGI is a trusted leader in technical computing with a focus on helping customers solve their most demanding business and technology challenges.”

ExtraHop Introduces Addy: Cloud-Based Machine Learning for Data-Driven IT

ExtraHop, the leader in real-time IT analytics, today announced ExtraHop Addy, the industry’s first cloud service that applies machine learning to the richest source of IT data—wire data—to provide real-time situational insight for IT teams. ExtraHop Addy is always-on, serving as the eyes and ears for IT and helping them take a proactive, data-driven approach to supporting and securing the digital experience.

The Difference between AI, Machine Learning and Deep Learning

The insideBIGDATA Guide to Deep Learning & Artificial Intelligence is a useful new resource directed toward enterprise thought leaders who wish to gain strategic insights into this exciting area of technology. This is the second in a series of articles providing content extracted from the guide. The topic for this segment is the difference between AI, machine learning and deep learning.