Driving Reliability and Improving Maintenance Outcomes with Machine Learning

Print Friendly, PDF & Email

In this special guest feature, Mike Brooks, Senior Business Consultant at AspenTech, discusses how companies can no longer rely solely on traditional equipment maintenance practices but must also incorporate operational behaviors in deploying data-driven solutions using machine learning. Mike Brooks is the former Mtell President & COO. Mike’s professional background includes strategic roles with Chevron Technology Ventures and the Wonderware division of Schneider Electric. He is also a founder of INDX, provider of IT for process industry firms.

There is a significant need for failure prevention to move from guesstimates to data-driven truths. The combination of mechanical and process induced breakdowns is costing up to 10% of a world-wide $1.4 trillion manufacturing market according to a 2012 report from The McKinsey Global Institute. While companies spend millions trying to address the issue and ultimately avoid unplanned downtime, until now, they have only been able to address wear and age-based failures. Current techniques cannot detect problems early enough and lack insight into the reasons behind the seemingly random failures that cause over 80% of unplanned downtime. This is where using Machine Learning software to cast a “wider net” around machines can capture process induced failures.

To avoid unplanned downtime, companies must identify and respond effectively to early indicators of impending failures. Traditional maintenance practices do not predict failures caused by process excursions. To do this, requires a unique technology approach combining machines and processes; particularly for asset-intensive industries such as manufacturing and transportation. With the right technology in place, organizations can sense the patterns of looming degradation, with sufficient warning to prevent failures and change outcomes.

Predicting Downtime with Machine Learning Software

Advanced Machine Learning software has already demonstrated incredible successes in the early identification of equipment failure. Such software is near-autonomous and learns behavioral patterns from the streams of digital data that are produced by sensors on and around machines and processes. Automatically, and requiring minimal resources, this advanced technology constantly learns and adapts to new signal patterns when operating conditions change. Failure signatures learned on one machine “inoculate” that machine so that the same condition will not recur. Additionally, the learned signatures are transferred to similar machines to prevent them being affected by the same degrading conditions.

For example, a North American energy company was losing up to a million dollars in repairs and lost revenue from repeat breakdowns of electric submersible pumps. The advanced Machine Learning application learned the behavior of eighteen pumps. The software detected an early casing leak on one pump that caused an environmental incident. Applying the failure signature to the rest of the pumps, provided an early warning, allowing early action to avoid a repeat incident; thus solving a major problem.

In another case, a leading railway freight firm operating across 23 states in the US used Machine Learning to address perennial locomotive engine failures costing millions in repairs, fines, and lost revenue. The Machine Learning application operates in-line, in real-time, and was deployed on a very large fleet of locomotives examining lube oil data for extremely early indicators of engine failure. The application even detected a degradation signature while the engine passed a low-pressure test. Diverting the locomotive for immediate service “saved the company millions of dollars in costly downtime and fines.”

The Time to Implement Machine Learning Software is Now

Companies can no longer rely solely on traditional maintenance practices but must also incorporate operational behaviors in deploying data-driven solutions. Today’s imperative means extracting additional value from existing assets and implementing an advanced Machine Learning program to deliver fast improvements. With the right software solutions, predictive technologies will detect the conditions that limit asset effectiveness, while providing prescriptive guidance that assures firms remain profitable and improve margins.


Sign up for the free insideBIGDATA newsletter.

Speak Your Mind