Sign up for our newsletter and get the latest big data news and analysis.

d-Matrix Launches New Chiplet Connectivity Platform to Address Exploding Compute Demand for Generative AI

Today, d-Matrix, a leader in high-efficiency AI-compute and inference processors, announced Jayhawk, an Open Domain-Specific Architecture (ODSA) Bunch of Wires (BoW) based chiplet platform for energy efficient die-die connectivity over organic substrates. Building on the back of the Nighthawk chiplet platform launched in 2021, the 2nd generation Jayhawk silicon platform further builds the scale-out chiplet based inference compute platform. d-Matrix customers will be able to use the inference compute platforms to manage Generative AI applications and Large Language Model transformer applications with a 10-20X improvement in performance. 

Large transformer models are creating new demands for AI inference at the same time that memory and energy requirements are hitting physical limits. d-Matrix provides one of the first Digital In-Memory Compute (DIMC) based inference compute platforms to come to market, transforming the economics of complex transformers and Generative AI with a scalable platform built to handle the immense data and power requirements of inference AI. Improving performance can make energy-hungry data centers more efficient while reducing latency for end users in AI applications.

“With the announcement of our 2nd generation chiplet platform, Jayhawk, and a track record of execution, we are establishing our leadership in the chiplet ecosystem,” said Sid Sheth, CEO of d-Matrix. “The d-Matrix team has made great progress towards building the world’s first in-memory computing platform with a chiplet-based architecture targeted for power hungry and latency sensitive demands of generative AI.”

d-Matrix’s novel compute platform uses an ingenious combination of an in-memory compute-based IC architecture, sophisticated tools that integrate with leading ANN models, and chiplets in a block grid formation to support scalability and efficiency for demanding ML workloads. By using a modular chiplet-based approach, data center customers can refresh compute platforms on a much faster cadence using a pre-validated chiplet architecture. To enable this, d-Matrix plans to build chiplets based on both BoW and UCIe based interconnects to enable a truly heterogeneous computing platform that can accommodate 3rd party chiplets.

“d-Matrix has moved quickly to seize the chiplet opportunity,  which should give them a first-mover advantage,” said Karl Freund, Founder and Principal Analyst at Cambrian-AI Research. “Anyone looking to add an AI accelerator to their SoC design would do well to investigate this new approach for efficient AI.”

The Jayhawk chiplet platform features:

  • 3mm, 15mm, 25 mm trace lengths on organic substrate
  • 16 Gbps/wire high bandwidth throughput
  • 6-nm TSMC process technology
  • <0.5 pJ/bit energy efficiency

Jayhawk is currently available for demos and evaluation. d-Matrix will be showcasing the Jayhawk platform at the Chiplet Summit Jan 24-26 in San Jose, CA

Sign up for the free insideBIGDATA newsletter.

Join us on Twitter: https://twitter.com/InsideBigData1

Join us on LinkedIn: https://www.linkedin.com/company/insidebigdata/

Join us on Facebook: https://www.facebook.com/insideBIGDATANOW

Leave a Comment

*