Study Finds Data Quality is Still the Largest Obstacle for Successful AI and Greater Human Expertise Needed Across ML Ops Lifecycle

iMerit, a leading artificial intelligence (AI) data solutions company, released its 2023 State of ML Ops report, which includes a study outlining the impact of data on wide-scale commercial-ready AI projects. The study surveyed AI, ML, and data practitioners across industries, and found an increasing need for better data quality and human expertise and oversight in delivering successful AI. This is especially true as powerful new generative AI tools and continuous improvements to automation are rolled out at an increasingly rapid pace. 

Domino Data Lab Makes Cutting-Edge AI Accessible to All Enterprises

Domino Data Lab, provider of a leading Enterprise MLOps platform trusted by over 20% of the Fortune 100, today at NVIDIA’s GTC, a global conference on AI and the Metaverse, announced powerful new updates giving every enterprise access to cutting-edge open-source tools and techniques to achieve AI value sooner.

ClearML Study: Friction a Key Challenge for MLOps Tools

ClearML, the open source, end-to-end MLOps platform, released the final set of data to complete its recently released research report, MLOps in 2023: What Does the Future Hold? Polling 200 U.S.-based machine learning decision makers, the report examines key trends, opportunities, and challenges in machine learning and MLOps.

Why AutoML Isn’t Enough to Democratize Data Science 

In this contributed article, Noam Brezis, co-founder and CTO of Pecan AI, explores that because AutoML was born out of academia, in its current incarnation it is only built to simplify the model building process. This is likely the reason why existing AutoML solutions are finding challenges with scaling. Plus, these types of solutions are not incorporating the aspects of data prep and feature engineering, nor the model training, deployment and monitoring, which as a result slowing down adoption of AI within the enterprise and curtailing the impact it can deliver.

New Study: Amid ChatGPT Craze, MLOps Spend Will Surge in 2023 as 60% of Machine Learning Leaders Plan to Boost Investments by Over 25%

ClearML, a leading open source, end-to-end MLOps platform, announced wide availability of its new, in-depth research report, MLOps in 2023: What Does the Future Hold? Polling 200 U.S.-based machine learning decision makers, the report examines key trends, opportunities, and challenges in machine learning and MLOps (machine learning operations).

Comet Introduces Kangas, An Open Source Smart Data Exploration, Analysis and Model Debugging Tool for Machine Learning 

Comet, provider of a leading MLOps platform for machine learning (ML) teams from startup to enterprise, announced a bold new product: Kangas. Open sourced to democratize large scale visual dataset exploration and analysis for the computer vision and machine learning community, Kangas helps users understand and debug their data in a new and highly intuitive way.

Discover the Secret to Building Effective ML Teams

What does it take to run an efficient ML team? Many wonder why some teams fail and a few others succeed. Though there is no one answer to this question, our friends over at Comet found three major success factors: visibility, reproducibility, and collaboration. Read Comet’s paper on “Building Effective Machine Learning Teams,” and gain deeper insights on how you can apply three ML components to your teams.

Seagate Launches Lyve Cloud Analytics Platform to Optimize Machine Learning Operations and Accelerate Innovation

Seagate® Technology Holdings plc (NASDAQ: STX), a world leader in mass-data storage infrastructure solutions, announced the launch of Lyve™ Cloud Analytics platform, a complete cloud-based analytics solution that includes storage, compute, and analytics, to help Lyve Cloud customers lower the total cost of ownership (TCO) and accelerate time to value with their DataOps and MLOps (machine learning operations).

ClearML Announces Availability of Unified, End-to-End MLOps Solution for Enterprises

ClearML, the frictionless, unified, end-to-end MLOps platform, announced the general availability of ClearML for Enterprise. Previously, the platform was only available to a select group of customers on an invite-only basis and is now widely available to all enterprise organizations across industries such as healthcare, healthtech, retailtech, adtech, martech, and manufacturing, among others.

The Secret to Automating Machine Learning Life Cycles

In this contributed article, Lucas Bonatto, CEO & Founder of Elemeno, suggests that the constant use, upgrade, and acceleration of AI and machine learning will create countless opportunities for enabling innovation in organizations outside IT, as well as adapting to changes in the IT Operations Model. The secret to automating ML lifecycles is to increase the adoption of AI around the world. The first step to achieve this goal is by providing an end-to-end ML-Ops platform with an AI Marketplace where users can obtain models, making the use of AI as seamless as possible.