Infographic: Is AI the Next Gold Rush?

Our friends over at writerbuddy.ai analyzed over 10,000 AI companies and their funding data between 2015 and 2023. The data was collected from CrunchBase, NetBase Quid, S&P Capital IQ, and NFX. Corporate AI investment has risen consistently to the tune of billions.

Gaining the Enterprise Edge in AI Products

In this contributed article, Taggart Bonham, Product Manager of Global AI at F5 Networks, discusses last June, OpenAI released GPT-3, their newest text-generating AI model. As seen in the deluge of Twitter demos, GPT-3 works so well that people have generated text-based DevOps pipelines, complex SQL queries, Figma designs, and even code. In the article, Taggart explains how enterprises need to prepare for the AI economy by standardizing their data collection processes across their organizations like GPT-3 so it can then be properly leveraged.

Have a Goal in Mind: GPT-3, PEGASUS, and New Frameworks for Text Summarization in Healthcare and BFSI

In this contributed article, Dattaraj Rao, Innovation and R&D Architect at Persistent Systems, discusses the rise in interest for neutral network language models, specifically the recent Google PEGASUS model. This model not only shows remarkable promise when it comes to text summarization and synthesis, but its non-generalized approach could push industries such as healthcare to embrace NLP much earlier than was once supposed.

Why Humans Still Need to be Involved in Language-Based AI

In this contributed article, Christine Maroti, AI Research Engineer at Unbabel, believes that humans still need to be in the loop in most practical AI applications, especially in nuanced areas such as language. Despite the hype, these algorithms still have major flaws. Machines still fall short of understanding the meaning and intent behind human conversation. Not to mention, ethical concerns such as bias in AI still are far from a solution.