Sign up for our newsletter and get the latest big data news and analysis.

Penguin Computing Announces OriginAI Powered by WekaIO

Penguin Computing, a division of SMART Global Holdings, Inc. (NASDAQ: SGH) and a leader in high-performance computing (HPC), artificial intelligence (AI), and enterprise data center solutions, announced that it has partnered with WekaIO™ (Weka) to provide NVIDIA GPU-Powered OriginAI, a comprehensive, end-to-end solution for data center AI that maximizes the performance and utility of high-value AI systems.

WekaIO Announces Cloud-Native, Unified Storage Solutions for the Entire Data Lifecycle

WekaIO™ (Weka), an innovation leader in high-performance, scalable file storage for data-intensive applications, today announced a transformative cloud-native storage solution underpinned by the fast file system, WekaFS™, that unifies and simplifies the data pipeline for performance-intensive workloads and accelerated DataOps.

Why You Need a Modern Infrastructure to Accelerate AI and ML Workloads

Recent years have seen a boom in the generation of data from a variety of sources: connected devices, IoT, analytics, healthcare, smartphones, and much more. This data management problem is particularly acute in the areas of Artificial Intelligence (AI) and Machine Learning (ML) workloads. This guest article from WekaIO highlights why focusing on optimizing infrastructure can spur machine learning workloads and AI success.

Scaling Production AI

As AI models grow larger and more complex, it requires a server architecture that looks much like high performance computing (HPC), with workloads scaled across many servers and distributed processing across the server infrastructure. Barbara Murphy, VP of Marketing, WekaIO, explores how as AI production models grow larger and more intricate, server architecture gets more complex. Explore how tools like GPU clusters and more are moving the dial forward on AI. 

AI Critical Measures: Time to Value and Insights

AI is a game changer for industries today but achieving AI success contains two critical factors to consider — time to value and time to insights.  Time to value is the metric that looks at the time it takes to realize the value of a product, solution or offering. Time to insight is a key measure for how long it takes to gain value from use of the product, solution or offering.

AI Goes Mainstream

According to a recent Gartner survey, Artificial intelligence (AI) learning has moved from a specialized field into mainstream business use with 37 percent of respondents reporting their enterprises either had deployed AI or would do so shortly. WekaIO’s Barbara Murphy explores the path of artificial intelligence from the fringe to mainstream business practices. Find out what is driving AI growth and adoption.